1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
| import tkinter as tk from tkinter import * import cv2 from PIL import Image, ImageTk import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D from keras.optimizers import Adam from keras.layers import MaxPooling2D from keras.preprocessing.image import ImageDataGenerator import os
emotion_model = Sequential()
emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1))) emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) emotion_model.add(MaxPooling2D(pool_size=(2, 2))) emotion_model.add(Dropout(0.25))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) emotion_model.add(MaxPooling2D(pool_size=(2, 2))) emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) emotion_model.add(MaxPooling2D(pool_size=(2, 2))) emotion_model.add(Dropout(0.25))
emotion_model.add(Flatten()) emotion_model.add(Dense(1024, activation='relu')) emotion_model.add(Dropout(0.5)) emotion_model.add(Dense(7, activation='softmax')) emotion_model.load_weights('emotion_model.h5')
cv2.ocl.setUseOpenCL(False)
emotion_dict = {0: " Angry ", 1: "Disgusted", 2: " Fearful ", 3: " Happy ", 4: " Neutral ", 5: " Sad ", 6: "Surprised"}
emoji_dist = {0: "./emojis/angry.png", 2: "./emojis/disgusted.png", 2: "./emojis/fearful.png", 3: "./emojis/happy.png", 4: "./emojis/neutral.png", 5: "./emojis/sad.png", 6: "./emojis/surpriced.png"}
global last_frame1 last_frame1 = np.zeros((480, 640, 3), dtype=np.uint8) global cap1 show_text = [0]
def show_vid(): cap1 = cv2.VideoCapture(0) if not cap1.isOpened(): print("cant open the camera1")
flag1, frame1 = cap1.read() frame1 = cv2.resize(frame1, (600, 500))
bounding_box = cv2.CascadeClassifier( 'D:/Anaconda/envs/pytorch/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml') gray_frame = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
num_faces = bounding_box.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)
for (x, y, w, h) in num_faces: cv2.rectangle(frame1, (x, y - 50), (x + w, y + h + 10), (255, 0, 0), 2) roi_gray_frame = gray_frame[y:y + h, x:x + w] cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0) prediction = emotion_model.predict(cropped_img)
maxindex = int(np.argmax(prediction)) show_text[0] = maxindex if flag1 is None: print("Major error!") elif flag1: global last_frame1 last_frame1 = frame1.copy() pic = cv2.cvtColor(last_frame1, cv2.COLOR_BGR2RGB) img = Image.fromarray(pic) imgtk = ImageTk.PhotoImage(image=img) lmain.imgtk = imgtk lmain.configure(image=imgtk) lmain.after(10, show_vid) if cv2.waitKey(1) & 0xFF == ord('q'): exit()
def show_vid2(): frame2 = cv2.imread(emoji_dist[show_text[0]]) pic2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2RGB) img2 = Image.fromarray(frame2) imgtk2 = ImageTk.PhotoImage(image=img2) lmain2.imgtk2 = imgtk2 lmain3.configure(text=emotion_dict[show_text[0]], font=('arial', 45, 'bold'))
lmain2.configure(image=imgtk2) lmain2.after(10, show_vid2)
if __name__ == '__main__': root = tk.Tk()
img = ImageTk.PhotoImage(Image.open('data/logo.png'))
print(img)
heading = Label(root, image=img, bg='black')
heading.pack() heading2 = Label(root, text="Photo to Emoji", pady=20, font=('arial', 45, 'bold'), bg='black', fg='#CDCDCD')
heading2.pack() lmain = tk.Label(master=root, padx=50, bd=10) lmain2 = tk.Label(master=root, bd=10)
lmain3 = tk.Label(master=root, bd=10, fg="#CDCDCD", bg='black') lmain.pack(side=LEFT) lmain.place(x=50, y=250) lmain3.pack() lmain3.place(x=960, y=250) lmain2.pack(side=RIGHT) lmain2.place(x=900, y=350)
root.title("Photo To Emoji") root.geometry("1400x900+100+10") root['bg'] = 'black' exitbutton = Button(root, text='Quit', fg="red", command=root.destroy, font=('arial', 25, 'bold')).pack(side=BOTTOM) show_vid() show_vid2() root.mainloop()
|